Respuesta :

Consider that the length of the arc 'C', angle (in radians) of the arc 'Θ', and the radius 'R' are related as,

[tex]\theta=\frac{C}{R}[/tex]

According to the given figure,

[tex]\begin{gathered} C=2\pi \\ R=4 \end{gathered}[/tex]

So the corresponding angle can be calculated as,

[tex]\begin{gathered} \theta=\frac{2\pi}{4} \\ \theta=\frac{\pi}{2} \\ \theta\approx1.57 \end{gathered}[/tex]

Thus, the angle measures π/2 or 1.57 radians.

RELAXING NOICE
Relax