Find the magnitude and direction angle (to the nearest tenth) for each vector. Give the measure of the direction angle as an angle in [0, 360°].

Answer:
magnitude = 8.5
direction angle = 45°
To get the magnitude of a vector , we will use the following formula:
[tex]||\vec{u}||=\sqrt{a^2+b^2}[/tex]Substituting a = 6 and b =6:
[tex]\begin{gathered} ||\vec{u}||=\sqrt{a^2+b^2} \\ ||\vec{u}||=\sqrt{6^2+6^2} \\ ||\vec{u}||=\sqrt{36+36} \\ ||\vec{u}||=\sqrt{72} \\ ||\vec{u}||=8.485\approx8.5 \end{gathered}[/tex]For the direction angle, we will use the following formula:
[tex]\begin{gathered} \tan\theta=\frac{b}{a} \\ \theta=\tan^{-1}\frac{6}{6} \\ \theta=45 \end{gathered}[/tex]The magnitude is 8.5 while the direction angle is 45°