We will have the following:
[tex]F=\frac{mv^2}{r}[/tex]
Then we determine the rotation of Earth:
[tex]\frac{2\pi}{24h}=\frac{2\pi}{1440\min}=\frac{2\pi}{86400s}\approx0.0000727Hz[/tex]
Then:
[tex]v=r\omega\Rightarrow v\approx(6390\operatorname{km})(0.0000727)[/tex][tex]\Rightarrow v\approx0.464553\operatorname{km}/s\Rightarrow v\approx464.553m/s[/tex]
Now, we find the force:
[tex]F\approx\frac{(80.9Kg)(464.553m/s)^2}{(6390000m)}\Rightarrow F\approx2.732235951\ldots N[/tex][tex]\Rightarrow F\approx2.73N[/tex]
So, the force needed would be approximately 2.73N.