Change y to x, and x to y
[tex]y=4x^2-16\Longrightarrow x=4y^2-16[/tex]Now that we have swapped x and y, solve for y.
[tex]\begin{gathered} x=4y^2-16 \\ -4y^2=-x-16 \\ \frac{-4y^2}{-4}=\frac{-x-16}{-4} \\ \frac{\cancel{-4}y^2}{\cancel{-4}}=\frac{-x}{-4}+\frac{-16}{-4},\text{ division by two negatives results into positive} \\ y^2=\frac{x+16}{4} \\ \sqrt[]{y^2}=\sqrt[]{\frac{x+16}{4}} \\ y=\sqrt[]{\frac{x+16}{4}} \\ \\ \text{Therefore, the inverse of the given function is} \\ y^{-1}=\pm\sqrt[]{\frac{x+16}{4}} \end{gathered}[/tex]