Respuesta :

Explanation

[tex]2x^2-4x+3[/tex]

When taking derivatives of polynomials, we primarily make use of the power rule.

Power rule.

[tex]\begin{gathered} f(x)=x^n \\ \text{then} \\ f^{\prime}(x)=nx^{n-1} \end{gathered}[/tex]

also, the derivate of a sum is the sum of the derivates

hence

[tex]\begin{gathered} g(x)=f(x)+h(x)+\ldots z(x) \\ g^{\prime}(x)=f^{\prime}(x)+h^{\prime}(x)+\ldots.z^{\prime}(x) \end{gathered}[/tex]

Step 1

apply:

[tex]\begin{gathered} f(x)=2x^2-4x+3 \\ f^{\prime}(x)=2\cdot2x^{2-1}-4(1)x^{1-1}+ \\ f^{\prime}(x)=4x^{}-4(1)x^0+3^0 \\ f^{\prime}(x)=4x^{}-4(1)(1) \\ f^{\prime}(x)=4z-4 \end{gathered}[/tex]

therefore, the answer is

RELAXING NOICE
Relax