The two data sets are given as follows:
[tex]\begin{gathered} A=\mleft\lbrace2,10,8,19,23\mright\rbrace \\ B=\mleft\lbrace14,16,15,17,16\mright\rbrace \end{gathered}[/tex]The mean is calculated as
[tex]\bar{X}=\frac{\text{Sum of numbers}}{Number\text{ of numbers}}[/tex]For Set A:
[tex]\begin{gathered} \bar{X_A}=\frac{2+10+8+19+23}{5} \\ \bar{X_A}=12.4 \end{gathered}[/tex]For Set B:
[tex]\begin{gathered} \bar{X_B}=\frac{14+16+15+17+16}{5} \\ \bar{X_B}=15.6 \end{gathered}[/tex]The median is calculated as
[tex]M=\text{Highest number - Lowest number}[/tex]For Set A:
[tex]\begin{gathered} \text{Highest Number = 23} \\ \text{Lowest Number = 2} \\ M_A=23-2 \\ M_A=21 \end{gathered}[/tex]For Set B:
[tex]\begin{gathered} \text{Highest Number = 17} \\ \text{Lowest Number = 14} \\ M_B=17-14 \\ M_B=3 \end{gathered}[/tex]From the values Set B has a higher mean than that of Set