What is the recursive formula for finding the nth term of the given geometric sequence?13,-39,117,-351,...

Solution:
Given:
[tex]13,-39,117,-351,...[/tex]The recursive formula of a geometric sequence is given by;
[tex]a_n=a_{n-1}\cdot r[/tex]The common ratio is;
[tex]\begin{gathered} r=\frac{-39}{13}=\frac{117}{-39} \\ r=-3 \end{gathered}[/tex]The first term is;
[tex]a_1=13[/tex]Therefore, the recursive formula is;
[tex]\begin{gathered} a_n=a_{n-1}(-3) \\ a_n=-3(a_{n-1}) \end{gathered}[/tex]