Respuesta :

From the given question,

There are given that two point, (-23, -14) and (-18, 2).

Now,

For finding the distance between two point,

Here use distance formula.

From the distance formula,

[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Where,

[tex]x_1=-23,y_1=-14,x_2=-18,y_2=2[/tex]

Put the all values into the above formula,

Then,

[tex]\begin{gathered} d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ d=\sqrt[]{(-18_{}-(-23_{})^2+(2_{}-(-14)_{})^2} \\ d=\sqrt[]{(-18_{}+23_{})^2+(2_{}+14_{})^2} \end{gathered}[/tex]

Then,

[tex]\begin{gathered} d=\sqrt[]{(-18_{}+23_{})^2+(2_{}+14_{})^2} \\ d=\sqrt[]{(5_{})^2+(16_{})^2} \\ d=\sqrt[]{25+256} \\ d=\sqrt[]{281} \end{gathered}[/tex]

Hence, the distance of given

RELAXING NOICE
Relax