Step 1:
a) From the graphing calculator
[tex]\begin{gathered} \text{The exponential regression model is} \\ y=ab^x \\ a\text{ = }33.67 \\ b\text{ = }1.01 \\ \\ \text{Therefore, y = 33.67 }\times(1.01)^x \\ Pt\text{ = y and x = t} \\ P(t)\text{ = 33.67 }\times1.01^t \end{gathered}[/tex]b)
The population of Canada at 2035, t = 25
[tex]\begin{gathered} P(2035)=33.67\times1.01^{25}^{} \\ =\text{ 33.67 }\times\text{ 1.2824} \\ =\text{ 43.2 million} \end{gathered}[/tex]c)
P(t) = 40
t = ?
[tex]\begin{gathered} P(t)\text{ = 33.67 }\times1.01^t \\ 40\text{ = 33.67 }\times1.01^t \\ 1.01^t\text{ = }\frac{40}{33.67} \\ 1.01^t\text{ = 1.188} \\ \text{Take log of both sides} \\ \log ^{1.01^t}_{}\text{ = }\log ^{1.188}_{} \\ t\text{ }\log ^{1.01}_{}\text{ = }\log ^{1.188}_{} \\ t\text{ = }\frac{\log ^{1.188}_{}}{\log ^{1.01}_{}} \\ t\text{ = }\frac{0.074816}{0.00432} \\ t\text{ = 17.32} \end{gathered}[/tex]t = 17 years
The model predicts Canada will reach 40 million in 2027