Respuesta :

Given:

[tex]\frac{2}{x-5}=\frac{x-4}{6}[/tex]

Required:

To find the value of x.

Explanation:

Consider the given equation,

[tex]\frac{2}{x-5}=\frac{x-4}{6}[/tex][tex]\begin{gathered} (x-5)(x-4)=12 \\ x^2-5x-4x+20=12 \\ x^2-9x+20=12 \\ x^2-9x+8=0 \end{gathered}[/tex]

Now, the value of x is

[tex]\begin{gathered} x=\frac{-9\pm\sqrt{81-32}}{2} \\ =\frac{-9\pm\sqrt{49}}{2} \\ =\frac{-9\pm7}{2} \end{gathered}[/tex][tex]\begin{gathered} x=\frac{-9+7}{2} \\ =\frac{-2}{2} \\ =-1 \end{gathered}[/tex]

OR

[tex]\begin{gathered} x=\frac{-9-7}{2} \\ =-\frac{16}{2} \\ =-8 \end{gathered}[/tex]

Final Answer:

The values of x are

[tex]x=-1,-8[/tex]

ACCESS MORE
EDU ACCESS