We can draw the following picture:
then, we can see that the parallelogram consists in 2 equal triangles:
The area of a triangle is
[tex]A_T=\frac{b\cdot h}{2}[/tex]By substituting the given values into the area formula, we get
[tex]\begin{gathered} \\ A_T=\frac{200\cdot120}{2} \\ A_T=\frac{24000}{2} \\ A_T=12000ft^2 \end{gathered}[/tex]Therefore, the area of the parallelogram is twice the area of one triangle:
[tex]A_{\text{parallelogram}}=2\cdot A_T[/tex]which gives:
[tex]\begin{gathered} A_{\text{parallelogram}}=2\cdot12000 \\ A_{\text{parallelogram}}=24000ft^2 \end{gathered}[/tex]that is, the answer is 24000 ft^2