Respuesta :

Given

[tex]y=-\frac{5}{8}x^3[/tex]

First calculate the ordered pairs for each point, to do so, select the values of x, replace them in the equation of the function, and then calculate the corresponding y-values

I'll calculate the values for x=-2, x=-1, x=0, x=1, x=2

For x=-2

[tex]\begin{gathered} y=-\frac{5}{8}(-2)^3 \\ y=(-\frac{5}{8})\cdot(-8) \\ y=5 \end{gathered}[/tex]

The first ordered pair is (-2,5)

For x=-1

[tex]\begin{gathered} y=-\frac{5}{8}(-1)^3 \\ y=(-\frac{5}{8})(-1) \\ y=\frac{5}{8} \end{gathered}[/tex]

The second ordered pair is (-1,5/8)

For x=0

[tex]\begin{gathered} y=-\frac{5}{8}\cdot0^3 \\ y=0 \end{gathered}[/tex]

The third ordered pair is (0,0)

For x=1

[tex]\begin{gathered} y=-\frac{5}{8}(1^3) \\ y=-\frac{5}{8} \end{gathered}[/tex]

The fourth ordered pair is (1,-5/8)

For x=2

[tex]\begin{gathered} y=-\frac{5}{8}(2^3) \\ y=-\frac{5}{8}\cdot8 \\ y=-5 \end{gathered}[/tex]

The fifth ordered pair is (2,-5)

Once you have determined all ordered pairs you can plot the five points.

Ver imagen LouisaT488429
RELAXING NOICE
Relax