Respuesta :
Trigonometry
We have that the sides of a right triangle receive different names depending on the angle we are going to analyze.
The opposite side of the right triangle is the hypotenuse:
And depending on the angle we are going to analyze, one side is that opposite to it and the other side is the adjacent:
Finding the missing side
We know by the Pythagorean Theorem that:
opposite² + adjacent² = hypotenuse²
In this case
hypotenuse = 20
adjacent = 16
opposite BC
Then
opposite² + adjacent² = hypotenuse²
↓
BC² + 16² = 20²
↓
BC² = 20² - 16²
BC² = 144 = 12²
↓
BC = 12
Sine
We have that the Sine formula is:
[tex]\sin (\text{angle)}=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]In this case:
angle = A
opposite side = 12
hypotenuse = 20
Then,
[tex]\begin{gathered} \sin (\text{angle)}=\frac{\text{opposite}}{\text{hypotenuse}} \\ \downarrow \\ \sin A=\frac{\text{1}2}{\text{2}0} \end{gathered}[/tex]If we simplify it, we have:
[tex]\sin A=\frac{\text{1}2}{\text{2}0}=\frac{3}{5}=0.6[/tex]Cosine
We have that the Cosine Formula is:
[tex]\cos (\text{angle)}=\frac{\text{adjacent}}{\text{hypotenuse}}[/tex]In this case:
angle = A
adjacent side = 16
hypotenuse = 20
Then
[tex]\begin{gathered} \cos (\text{angle)}=\frac{\text{adjacent}}{\text{hypotenuse}} \\ \downarrow \\ \cos A=\frac{16}{20} \end{gathered}[/tex]If we simplify it, we have:
[tex]\cos A=\frac{\text{1}6}{\text{2}0}=\frac{4}{5}=0.8[/tex]Tangent
We have that the Tangent Formula is:
[tex]\tan (\text{angle)}=\frac{\text{opposite}}{\text{adjacent}}[/tex]In this case:
angle = A
opposite side = 12
adjacent side = 16
[tex]\begin{gathered} \tan (\text{angle)}=\frac{\text{opposite}}{\text{adjacent}} \\ \downarrow \\ \tan A=\frac{12}{16} \end{gathered}[/tex]If we simplify it, we have:
[tex]\tan A=\frac{3}{4}=0.75[/tex]Answers
sinA = 0.6
cosA = 0.8
tanA = 0.75



Otras preguntas
