Respuesta :

Trigonometry

We have that the sides of a right triangle receive different names depending on the angle we are going to analyze.

The opposite side of the right triangle is the hypotenuse:

And depending on the angle we are going to analyze, one side is that opposite to it and the other side is the adjacent:

Finding the missing side

We know by the Pythagorean Theorem that:

opposite² + adjacent² = hypotenuse²

In this case

hypotenuse = 20

adjacent = 16

opposite BC

Then

opposite² + adjacent² = hypotenuse²

BC² + 16² = 20²

BC² = 20² - 16²

BC² = 144 = 12²

BC = 12

Sine

We have that the Sine formula is:

[tex]\sin (\text{angle)}=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]

In this case:

angle = A

opposite side = 12

hypotenuse = 20

Then,

[tex]\begin{gathered} \sin (\text{angle)}=\frac{\text{opposite}}{\text{hypotenuse}} \\ \downarrow \\ \sin A=\frac{\text{1}2}{\text{2}0} \end{gathered}[/tex]

If we simplify it, we have:

[tex]\sin A=\frac{\text{1}2}{\text{2}0}=\frac{3}{5}=0.6[/tex]

Cosine

We have that the Cosine Formula is:

[tex]\cos (\text{angle)}=\frac{\text{adjacent}}{\text{hypotenuse}}[/tex]

In this case:

angle = A

adjacent side = 16

hypotenuse = 20

Then

[tex]\begin{gathered} \cos (\text{angle)}=\frac{\text{adjacent}}{\text{hypotenuse}} \\ \downarrow \\ \cos A=\frac{16}{20} \end{gathered}[/tex]

If we simplify it, we have:

[tex]\cos A=\frac{\text{1}6}{\text{2}0}=\frac{4}{5}=0.8[/tex]

Tangent

We have that the Tangent Formula is:

[tex]\tan (\text{angle)}=\frac{\text{opposite}}{\text{adjacent}}[/tex]

In this case:

angle = A

opposite side = 12

adjacent side = 16

[tex]\begin{gathered} \tan (\text{angle)}=\frac{\text{opposite}}{\text{adjacent}} \\ \downarrow \\ \tan A=\frac{12}{16} \end{gathered}[/tex]

If we simplify it, we have:

[tex]\tan A=\frac{3}{4}=0.75[/tex]

Answers

sinA = 0.6

cosA = 0.8

tanA = 0.75

Ver imagen KataleaN408135
Ver imagen KataleaN408135
Ver imagen KataleaN408135
RELAXING NOICE
Relax