the equation to cos squared theta equals cos data has Solutions of

Given the domain
[tex]0\le\theta<2\pi[/tex]The equation
[tex]2\cos ^2\theta=\cos \theta[/tex]To simplify,
[tex]\begin{gathered} \text{let} \\ x=\cos \theta \end{gathered}[/tex]so that
[tex]2x^2=x[/tex]Then we will have
[tex]2x^2-x=0[/tex]We will have
[tex]\begin{gathered} x(2x-1)=0 \\ \text{Thus} \\ x=0 \\ \text{and} \\ x=\frac{1}{2} \end{gathered}[/tex]Hence
[tex]\begin{gathered} \cos \theta=0 \\ \text{and} \\ \cos \theta=\frac{1}{2} \end{gathered}[/tex]We can find the values of θ as follow
when cosθ = 0
[tex]\theta=\frac{\pi}{2},\frac{3\pi}{2}[/tex]When
[tex]\begin{gathered} \cos \theta=\frac{1}{2} \\ \theta=\frac{\pi}{3},\frac{5\pi}{3} \end{gathered}[/tex]Thus, the answer is:
[tex]\begin{gathered} \text{Option A} \\ \frac{\pi}{3},\frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{3} \end{gathered}[/tex]