Respuesta :

Given the domain

[tex]0\le\theta<2\pi[/tex]

The equation

[tex]2\cos ^2\theta=\cos \theta[/tex]

To simplify,

[tex]\begin{gathered} \text{let} \\ x=\cos \theta \end{gathered}[/tex]

so that

[tex]2x^2=x[/tex]

Then we will have

[tex]2x^2-x=0[/tex]

We will have

[tex]\begin{gathered} x(2x-1)=0 \\ \text{Thus} \\ x=0 \\ \text{and} \\ x=\frac{1}{2} \end{gathered}[/tex]

Hence

[tex]\begin{gathered} \cos \theta=0 \\ \text{and} \\ \cos \theta=\frac{1}{2} \end{gathered}[/tex]

We can find the values of θ as follow

when cosθ = 0

[tex]\theta=\frac{\pi}{2},\frac{3\pi}{2}[/tex]

When

[tex]\begin{gathered} \cos \theta=\frac{1}{2} \\ \theta=\frac{\pi}{3},\frac{5\pi}{3} \end{gathered}[/tex]

Thus, the answer is:

[tex]\begin{gathered} \text{Option A} \\ \frac{\pi}{3},\frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{3} \end{gathered}[/tex]

ACCESS MORE
EDU ACCESS