To solve the problem we need to use the next given equation:
[tex]P\left(t\right)=1600e^{0.05t}[/tex]If the population will exceed 2282. Then p(x)= 2282.
[tex]2282=1,600e^{0.05t}[/tex]Solve for t:
[tex]\frac{2282}{1600}=e^{0.05t}[/tex]Now, we need to take logarithms:
[tex]\begin{gathered} \ln(\frac{2282}{1600})=\ln e^{0.05t} \\ \ln(\frac{2282}{1600})=0.05t\ast\ln e \end{gathered}[/tex]Where ln*e = 1.Then:
[tex]\begin{gathered} \ln(\frac{2282}{1600})=0.05t \\ Where \\ t=\frac{\ln(\frac{2282}{1600})}{0.05} \\ t=7.100 \end{gathered}[/tex]Hence, the population will exceed 2282 when t=7.100