Using the standard domain for the sine function, which of the following expressions corresponds to the composite function sin(accosx)?

EXPLANATION:
We are given the composite function;
[tex]sin(arccosx)[/tex]We are required to determine the expression that corresponds to this.
To do that, we shall recall the Pythagorean identity, and that is;
[tex]sin^2\theta+cos^2\theta=1[/tex][tex]\begin{gathered} If\text{ }\theta=arccos(x) \\ Then\text{ }\theta\text{ }\in[0,\pi] \end{gathered}[/tex]And;
[tex]sin\theta\ge0[/tex]Therefore;
[tex]sin(arccos(x))=sin\theta[/tex]Going back to our Pythagorean identity;
[tex]\begin{gathered} sin^2\theta+cos^2\theta=1 \\ sin^2\theta=1-cos^2\theta \end{gathered}[/tex]Take the square root of both sides;
[tex]sin\theta=\sqrt{1-cos^2\theta}[/tex]Where you have;
[tex]\theta=arccos(x)[/tex][tex]sin(arccos(x))=\sqrt{1-x^2}[/tex]ANSWER:
Option D:
[tex]\sqrt{1-x^2}[/tex]