Respuesta :

EXPLANATION:

We are given the composite function;

[tex]sin(arccosx)[/tex]

We are required to determine the expression that corresponds to this.

To do that, we shall recall the Pythagorean identity, and that is;

[tex]sin^2\theta+cos^2\theta=1[/tex][tex]\begin{gathered} If\text{ }\theta=arccos(x) \\ Then\text{ }\theta\text{ }\in[0,\pi] \end{gathered}[/tex]

And;

[tex]sin\theta\ge0[/tex]

Therefore;

[tex]sin(arccos(x))=sin\theta[/tex]

Going back to our Pythagorean identity;

[tex]\begin{gathered} sin^2\theta+cos^2\theta=1 \\ sin^2\theta=1-cos^2\theta \end{gathered}[/tex]

Take the square root of both sides;

[tex]sin\theta=\sqrt{1-cos^2\theta}[/tex]

Where you have;

[tex]\theta=arccos(x)[/tex][tex]sin(arccos(x))=\sqrt{1-x^2}[/tex]

ANSWER:

Option D:

[tex]\sqrt{1-x^2}[/tex]

RELAXING NOICE
Relax