Respuesta :

Given:

[tex]\text{The center, \lparen h,k\rparen =\lparen0,3\rparen.}[/tex][tex]The\text{ radius, r=2}\sqrt{14}.[/tex]

Required:

We need to find the equation in standard form for the circle.

Explanation:

Consider the equation in standard form for the circle.

[tex](x-h)^2+(y-k)^2=r^2[/tex][tex]\text{ Substitute h =0, k=3 and r =2}\sqrt{14}\text{ in the formula.}[/tex]

[tex](x-0)^2+(y-3)^2=(2\sqrt{14})^2[/tex]

[tex](x-0)^2+(y-3)^2=2(\sqrt{14})^2[/tex][tex]Use\text{ \lparen}\sqrt{14})^2=14.[/tex][tex]x^2+(y-3)^2=2^2\times14[/tex]

[tex]x^2+(y-3)^2=56[/tex]

Final Answer:

The equation in standard form for the circle is,

[tex]x^2+(y-3)^2=56.[/tex]

RELAXING NOICE
Relax