Write the equation in standard form for the circle with center (0,3) and radius 2/14

Given:
[tex]\text{The center, \lparen h,k\rparen =\lparen0,3\rparen.}[/tex][tex]The\text{ radius, r=2}\sqrt{14}.[/tex]Required:
We need to find the equation in standard form for the circle.
Explanation:
Consider the equation in standard form for the circle.
[tex](x-h)^2+(y-k)^2=r^2[/tex][tex]\text{ Substitute h =0, k=3 and r =2}\sqrt{14}\text{ in the formula.}[/tex][tex](x-0)^2+(y-3)^2=(2\sqrt{14})^2[/tex][tex](x-0)^2+(y-3)^2=2(\sqrt{14})^2[/tex][tex]Use\text{ \lparen}\sqrt{14})^2=14.[/tex][tex]x^2+(y-3)^2=2^2\times14[/tex][tex]x^2+(y-3)^2=56[/tex]Final Answer:
The equation in standard form for the circle is,
[tex]x^2+(y-3)^2=56.[/tex]