Find the value of the correlation coefficient. You may either compute it yourself from the formula, using the information below to help you, or use something like Excel or a graphing calculator to compute it for you.

Find the value of the correlation coefficient You may either compute it yourself from the formula using the information below to help you or use something like class=

Respuesta :

We have to calculate the correlation coefficiente from the data in the table.

We can write the formula as:

[tex]\rho=\frac{n\sum^{}_{}xy-\sum^{}_{}x\sum^{}_{}y}{\sqrt[]{\lbrack n\sum^{}_{}x^2-(\sum^{}_{}x)^2\rbrack\lbrack n\sum^{}_{}y^2-(\sum^{}_{}y)^2\rbrack}}[/tex]

We can use the sums already calculated and replace withe the values as:

[tex]\begin{gathered} \rho=\frac{n\sum^{}_{}xy-\sum^{}_{}x\sum^{}_{}y}{\sqrt[]{\lbrack n\sum^{}_{}x^2-(\sum^{}_{}x)^2\rbrack\lbrack n\sum^{}_{}y^2-(\sum^{}_{}y)^2\rbrack}} \\ \rho=\frac{6\cdot3405-32\cdot1105}{\sqrt[]{(6\cdot220-32^2)(6\cdot364525-1105^2)}} \\ \rho=\frac{20430-35360}{\sqrt[]{(1320-1024)(2187150-1221025)}} \\ \rho=\frac{-14930}{\sqrt[]{296\cdot966125}} \\ \rho=\frac{-14930}{\sqrt[]{285973000}} \\ \rho\approx\frac{-14930}{16910.74} \\ \rho\approx-0.883 \end{gathered}[/tex]

Answer: the correlation coefficient is r = -0.883.

ACCESS MORE
EDU ACCESS
Universidad de Mexico