Given:
The standard form of a parabola is given as:
[tex](y-k)^2\text{ = 4p(x-h)}[/tex]
The equation:
[tex]3y^2\text{ -4x - 6y + 23 = 0}[/tex]
Let us begin by re-writing the given equation in standard form:
[tex]\begin{gathered} 3y^2\text{ - 4x - 6y + 23 = 0} \\ 3y^2\text{ - 6y = 4x - 23} \\ 3(y^2\text{ - 2y) = 4x - 23} \\ y^2\text{ - 2y = }\frac{1}{3}(4x\text{ - 23)} \\ (y-1)^2\text{ -1 = }\frac{1}{3}(4x\text{ - 23)} \\ (y-1)^2\text{ = }\frac{4}{3}(x\text{ - }\frac{23}{4})\text{ + 1} \\ (y-1)^2\text{ = }\frac{4}{3}x\text{ - }\frac{23}{3}\text{ + 1} \\ (y-1)^2\text{ = }\frac{4}{3}x\text{ -}\frac{20}{3} \\ (y-1)^2\text{ = }\frac{4}{3}(x\text{ - 5)} \end{gathered}[/tex]
The value of p
Comparing the given equation in standard form to the standard form:
[tex]p\text{ = }\frac{1}{3}[/tex]
The vertex:
[tex](h,\text{ k) = (5, 1)}[/tex]
The focus:
[tex]\begin{gathered} (h\text{ + p, k) = (5 +}\frac{1}{3},\text{ 1)} \\ =\text{ (}5.33,\text{ 1)} \end{gathered}[/tex]
The directrix
[tex]\begin{gathered} x\text{ =h -p} \\ x\text{ = 5 - }\frac{1}{3} \\ x=\text{ 4.67} \end{gathered}[/tex]