Answer:
The price that will allow the production of widget to break even is $2.52
Explanation:
Given the revenue of
[tex]y=-25x^2-35x+300[/tex]cost as
[tex]y=25x-10[/tex]To obtain break even, we make the revenue equal to the cost.
That is:
[tex]-25x^2-35x+300=25x-10[/tex]Now, we solve the equation
[tex]\begin{gathered} -25x^2-35x-25x=-10-300 \\ \\ -25x^2-60x=-310 \\ \text{Divide both sides by -5} \\ 5x^2+12x=62 \\ \\ 5x^2+12x-62=0 \\ \end{gathered}[/tex]Using the quadratic formula:
[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \\ \text{Here:} \\ a=5 \\ b=12 \\ c=-62 \\ \\ \\ x=\frac{-12\pm\sqrt[]{12^2-4(5)(-62})}{2(5)} \\ \\ =\frac{-12\pm\sqrt[]{144^{}+1240}}{10} \\ \\ =\frac{-12\pm\sqrt[]{1384}}{10} \\ \\ =\frac{-12\pm37.2}{10} \\ \\ x=2.52 \\ OR \\ x=-4.92 \end{gathered}[/tex]The price that will allow the production of widget to break even is $2.52