As given by the question
There are given that the system of the equation:
[tex]\begin{gathered} 4x+5y=7\ldots(1) \\ y=3x+9\ldots(2) \end{gathered}[/tex]Now,
Put the value of equation (2) into equation (1) instead of y:
So,
From the equation (1):
[tex]\begin{gathered} 4x+5y=7 \\ 4x+5(3x+9)=7 \\ 4x+15x+45=7 \end{gathered}[/tex]Then,
[tex]\begin{gathered} 4x+15x+45=7 \\ 19x+45=7 \\ 19x=7-45 \\ 19x=-38 \\ x=-\frac{38}{19} \\ x=-2 \end{gathered}[/tex]Then,
Put the value of x into equation (2) to find the y:
So,
[tex]\begin{gathered} y=3x+9 \\ y=3(-2)+9 \\ y=-6+9 \\ y=3 \end{gathered}[/tex]Hence, the value of x and y is shown below:
[tex]\begin{gathered} x=-2 \\ y=3 \end{gathered}[/tex]