Find (f o g)(1) for the following functions. Round your answer to two decimal places, if necessary.

By definition:
[tex](f\circ g)(x)[/tex]It is a Function Compositon. It means that you must substitute the function g(x) into the function f(x).
For this case:
[tex]\begin{gathered} f(x)=2+\sqrt[]{x} \\ g(x)=\sqrt[]{x+24} \end{gathered}[/tex]Substitute the function g(x) into the function f(x):
[tex](f\circ g)(x)=2+\sqrt[]{\sqrt[]{x+24}}[/tex]Simplify:
[tex](f\circ g)(x)=2+\sqrt[4]{x+24}[/tex]Now, substitute this value into the Composite function and evaluate:
[tex]x=1[/tex]You get:
[tex]\begin{gathered} (f\circ g)(1)=2+\sqrt[4]{1+24} \\ (f\circ g)(1)=2+\sqrt[4]{25} \\ (f\circ g)(1)=2+\sqrt[4]{5^2} \\ (f\circ g)(1)=2+\sqrt[]{5} \end{gathered}[/tex]