Respuesta :

By definition:

[tex](f\circ g)(x)[/tex]

It is a Function Compositon. It means that you must substitute the function g(x) into the function f(x).

For this case:

[tex]\begin{gathered} f(x)=2+\sqrt[]{x} \\ g(x)=\sqrt[]{x+24} \end{gathered}[/tex]

Substitute the function g(x) into the function f(x):

[tex](f\circ g)(x)=2+\sqrt[]{\sqrt[]{x+24}}[/tex]

Simplify:

[tex](f\circ g)(x)=2+\sqrt[4]{x+24}[/tex]

Now, substitute this value into the Composite function and evaluate:

[tex]x=1[/tex]

You get:

[tex]\begin{gathered} (f\circ g)(1)=2+\sqrt[4]{1+24} \\ (f\circ g)(1)=2+\sqrt[4]{25} \\ (f\circ g)(1)=2+\sqrt[4]{5^2} \\ (f\circ g)(1)=2+\sqrt[]{5} \end{gathered}[/tex]

RELAXING NOICE
Relax

Otras preguntas