Given:
Number of tickets sold = 500
Number of tickets David bought (5, 6, 7, and 8) = 4 tickets
Let's find the odds in favor of David's winning the raffle.
To find the odds in favor, apply the formula:
[tex]\begin{gathered} odds=P(\text{James will win) : P(James will not win)} \\ \\ \text{odds}=\frac{P(\text{James will win)}}{P(James\text{ will not win)}} \end{gathered}[/tex]Thus, we have:
[tex]\begin{gathered} odds=\frac{\frac{4}{500}}{\frac{500-4}{500}} \\ \\ odds=\frac{\frac{1}{125}}{\frac{496}{500}} \\ \\ \text{odds}=\frac{\frac{1}{125}}{\frac{125}{124}} \\ \\ \text{odds}=\frac{1}{125}\ast\frac{125}{124} \\ \\ \text{odds}=\frac{1}{124} \\ \\ \text{odds}=1\colon124 \end{gathered}[/tex]Therefore, the odds in favor of David's wining the raffle is 1 : 124
ANSWER:
1 : 124