PART A:
The zeros of the function are the values of t where we have h = 0.
Looking at the table, the zeros are t = 0 and t = 10.5
PART B:
Let's write the function using the factored form of the quadratic equation:
[tex]h(t)=c(t-t_1)(t-t_2)_{}[/tex]Since the zeros are 0 and 10.5, we have t1 = 0 and t2 = 10.5, so:
[tex]h(t)=c\cdot t\cdot(t-10.5)[/tex]Now, using the point (2, 272) from the table, we have:
[tex]\begin{gathered} 272=c\cdot2\cdot(2-10.5) \\ 272=2c\cdot(-8.5) \\ -17c=272 \\ c=-16 \end{gathered}[/tex]So our function is:
[tex]h(t)=-16\cdot t\cdot(t-10.5)[/tex]PART C:
First let's expand our function to the standard form:
[tex]\begin{gathered} h(t)=-16t(t-10.5) \\ h(t)=-16t^2+168t+0 \end{gathered}[/tex]Comparing with the given model, we have V0 = 168 ft/s (because the coefficient multiplying the variable t is 168 in our function and V0 in the given model).
PART D:
First, let's calculate the average value between the zeros:
[tex]t_v=\frac{0+10.5}{2}=5.25[/tex]Using this value of t in the function, we have:
[tex]\begin{gathered} h(t_v)=-16\cdot5.25\cdot(5.25-10.5) \\ h(t_v)=441\text{ ft} \end{gathered}[/tex]So the maximum height is 441 ft.