Respuesta :

Given the line shown in the figure passes through the points (-3, -4) and (1, 2)

We will write the equation of the line.

First, we will find the slope of the line using the following formula:

[tex]slope=m=\frac{rise}{run}=\frac{y_2-y_1}{x_2-x_1}[/tex]

Substitute with the given points:

[tex]m=\frac{2-(-4)}{1-(-3)}=\frac{2+4}{1+3}=\frac{6}{4}=\frac{3}{2}=1.5[/tex]

The equation of the line in point-slope form will be as follows:

[tex]\begin{gathered} y+4=1.5(x+3) \\ or \\ y-2=1.5(x-1) \end{gathered}[/tex]

Convert tot he slope-intercept form, so, the equation will be:

[tex]\begin{gathered} y=1.5(x+3)-4 \\ y=1.5x+4.5-4 \\ \\ y=1.5x+0.5 \end{gathered}[/tex]

Now, we will check the options to see the correct equations.

So, the answer will be, we will select the options:

A. y+4 = 1.5 (x+3)

B. y = 1.5x + 0.5

C. y - 2 = 1.5 (x - 1)

ACCESS MORE
EDU ACCESS
Universidad de Mexico