Respuesta :

we have the expression

[tex]\log _a(\frac{\sqrt[]{3}}{10})[/tex]

Applying property of exponents and log

[tex]\log _a(\frac{\sqrt[]{3}}{10})=\log _a(\frac{3^{(\frac{1}{2})}}{2\cdot5})[/tex][tex]\log _a(\frac{3^{(\frac{1}{2})}}{2\cdot5})=\log _a3^{(\frac{1}{2})}-\log _a(2\cdot5)[/tex][tex]\log _a3^{(\frac{1}{2})}-\log _a(2\cdot5)=\frac{1}{2}\log _a3-(\log _a2+\log _a5)[/tex][tex]\frac{1}{2}\log _a3-(\log _a2+\log _a5)=\frac{1}{2}\log _a3-\log _a2-\log _a5[/tex]

substitute given values

[tex]\frac{1}{2}\log _a3-\log _a2-\log _a5=\frac{1}{2}\cdot0.6131-0.3869-0.8982[/tex][tex]\frac{1}{2}\cdot0.6131-0.3869-0.8982=-0.9786[/tex]

The answer is -0.9786

RELAXING NOICE
Relax