The half-life of a radioactive element is given by
[tex]P(t)=P_0\cdot(0.5)^{\frac{t}{H}}[/tex]Where P(t) is the amount of element at time t, P₀ is the amount at time zero.
H is the half-life and t is the time in days.
For the given case,
t = 640 days
[tex]\begin{gathered} P\mleft(640\mright)=P_0\cdot(1-0.53) \\ P(640)=P_0\cdot(0.47) \\ \frac{P(640)}{P_0}=0.47 \end{gathered}[/tex]Now simply substitute this ratio into the above equation
[tex]\begin{gathered} \frac{P(t)}{P_0}=(0.5)^{\frac{t}{H}} \\ 0.47=(0.5)^{\frac{640}{H}} \end{gathered}[/tex]Take log on both sides
[tex]\begin{gathered} \ln (0.47)=\ln ((0.5)^{\frac{640}{H}}) \\ \ln (0.47)=\frac{640}{H}\ln (0.5) \\ \frac{\ln (0.47)}{\ln (0.5)}=\frac{640}{H} \\ 1.0893=\frac{640}{H} \\ H=\frac{640}{1.0893} \\ H=587.5 \\ H=588\; \text{days} \end{gathered}[/tex]Therefore, the half-life of the element is 588 days
Part (b)
How long will it take for a sample of 100 mg to decay to 55 mg
So, we need to find time (t)
For the given case, we have
P(t) = 55
P₀ = 100
H = 588
[tex]\begin{gathered} P(t)=P_0\cdot(0.5)^{\frac{t}{H}} \\ 55=100\cdot(0.5)^{\frac{t}{588}} \\ \frac{55}{100}=0.5^{\frac{t}{588}} \\ 0.55=0.5^{\frac{t}{588}} \end{gathered}[/tex]Take log on both sides
[tex]\begin{gathered} \ln (0.55)=\ln (0.5^{\frac{t}{588}}) \\ \ln (0.55)=\frac{t}{588}\ln (0.5) \\ \frac{\ln (0.55)}{\ln (0.5)}=\frac{t}{588} \\ 0.8625=\frac{t}{588} \\ t=588\cdot0.8625 \\ t=507\; \text{days} \end{gathered}[/tex]Therefore, it would take 507 days for a sample of 100 mg to decay to 55 mg.