EXPLANATION
Since we have the function:
[tex]N(t)=975e^{0.3t}[/tex]The standard form of a growth equation is the following:
[tex]N(t)=N_0*e^{kt}[/tex]Where N_0 = Initial population k= relative growth rate
a) The relative rate of growth is k=0.3
b) The initial population is 975 bacteria.
c) Plugging in the value t=5 into the expression:
[tex]N(t)=975*e^{0.3*5}[/tex]Multiplying numbers:
[tex]N(t)=975*e^{1.5}[/tex]Computing the exponent:
[tex]N(t)=975*4.48[/tex]Multiplying terms:
[tex]N(t)=4368[/tex]There will be 4368 bacteria at the time t=5