If a = 12, b = 16, and c = 25, then the area of triangle ABC = ….

The area of a triangle is given by the next formula:
[tex]A_S=\frac{base\cdot height}{2}[/tex]Now, in this case, we don't know the height. Therefore, we need to use Heron's formula:
[tex]A_S=\sqrt[]{s(s-a)\cdot(s-b)\cdot(s-c)}[/tex]Where s:
[tex]s=\frac{a+b+c}{2}[/tex]Let's find s:
[tex]s=\frac{12+16+25}{2}[/tex][tex]s=\frac{53}{2}[/tex]Then, replace s on the area formula:
[tex]A=\sqrt[]{(\frac{53}{2}(\frac{53}{2}-12)\cdot(\frac{53}{2}-16)\cdot(\frac{53}{2}-25))}[/tex]Hence, the area of the triangle given is:
[tex]A=77.8[/tex]The value is rounded to the nearest tenth.