We have the following:
1.
let x a tulips
let y daffodils
therefore:
[tex]\begin{gathered} x+y=15\rightarrow x=15-y \\ 10x+7y=(x+y)8\rightarrow10x+7y=120 \end{gathered}[/tex]solving:
[tex]\begin{gathered} 10\cdot(15-y)+7y=120 \\ 150-10y+7y=120 \\ 10y-7y=150-120 \\ 3y=30 \\ y=\frac{30}{3}=10 \end{gathered}[/tex]for x:
[tex]x=15-10=5[/tex]Therefore, the answer is 5 tulips and 10 daffodils
2.
let x a 30% silver
let y a 55% silver
[tex]\begin{gathered} x+y=800\rightarrow x=800-y \\ 30x+55y=40\cdot(x+y)\rightarrow30x+55y=32000 \end{gathered}[/tex]solving:
[tex]\begin{gathered} 30\cdot(800-y)+55y=32000 \\ 24000-30y+55y=32000 \\ 25y=32000-24000 \\ y=\frac{8000}{25} \\ y=320 \end{gathered}[/tex]for x:
[tex]x=800-320=480[/tex]Therefore, the answer is 480 pounds of 30% silver and 320 pounds of 55% silver