Respuesta :

Given the expression in the image, we first get the resulting fraction from the calculations though the following steps.

Step 1: We factorise the 4 quadratic equations:

[tex]9x^2+3x-20[/tex]

Factors of the equation above after factorisation will be;

[tex]\begin{gathered} 9x^2+3x-20 \\ (3x-4)(3x+5) \end{gathered}[/tex]

Equation 2:

[tex]3x^2-7x+4_{}[/tex]

Factors of the equation above after factorisation will be;

[tex]\begin{gathered} 3x^2-7x+4 \\ (x-1)(3x-4) \end{gathered}[/tex]

Equation 3:

[tex]6x^2+4x-10[/tex]

Factors of the equation above after factorisation will be;

[tex]\begin{gathered} 6x^2+4x-10 \\ 2(x-1)(3x+5) \end{gathered}[/tex]

Equation 4:

[tex]x^2-2x+1[/tex]

Factors of the equation above after factorisation will be;

[tex]\begin{gathered} x^2-2x+1 \\ (x-1)(x-1) \end{gathered}[/tex]

Step 2: To compute the division, we have

[tex]\begin{gathered} \frac{(3x-4)(3x+5)}{(x-1)(3x-4)}\text{ divided by} \\ \\ \frac{2(x-1)(3x+5)}{(x-1)(x-1)} \end{gathered}[/tex]

We have:

[tex]\begin{gathered} \frac{(3x+5)}{(x-1)}\text{ divided by} \\ \\ \frac{2(3x+5)}{(x-1)} \end{gathered}[/tex]

This gives us:

[tex]\begin{gathered} \frac{3x+5}{x-1}\times\frac{x-1}{2(3x+5)} \\ \text{After division, we have:} \\ \frac{1}{2} \end{gathered}[/tex]

From the final fraction which is 1/2, it can be seen that the numerator is 1 while the denominator is 2.

RELAXING NOICE
Relax