Divide the rational expectations express in simplest form. Numerator and denominator must be in variable form.

Given the expression in the image, we first get the resulting fraction from the calculations though the following steps.
Step 1: We factorise the 4 quadratic equations:
[tex]9x^2+3x-20[/tex]Factors of the equation above after factorisation will be;
[tex]\begin{gathered} 9x^2+3x-20 \\ (3x-4)(3x+5) \end{gathered}[/tex]Equation 2:
[tex]3x^2-7x+4_{}[/tex]Factors of the equation above after factorisation will be;
[tex]\begin{gathered} 3x^2-7x+4 \\ (x-1)(3x-4) \end{gathered}[/tex]Equation 3:
[tex]6x^2+4x-10[/tex]Factors of the equation above after factorisation will be;
[tex]\begin{gathered} 6x^2+4x-10 \\ 2(x-1)(3x+5) \end{gathered}[/tex]Equation 4:
[tex]x^2-2x+1[/tex]Factors of the equation above after factorisation will be;
[tex]\begin{gathered} x^2-2x+1 \\ (x-1)(x-1) \end{gathered}[/tex]Step 2: To compute the division, we have
[tex]\begin{gathered} \frac{(3x-4)(3x+5)}{(x-1)(3x-4)}\text{ divided by} \\ \\ \frac{2(x-1)(3x+5)}{(x-1)(x-1)} \end{gathered}[/tex]We have:
[tex]\begin{gathered} \frac{(3x+5)}{(x-1)}\text{ divided by} \\ \\ \frac{2(3x+5)}{(x-1)} \end{gathered}[/tex]This gives us:
[tex]\begin{gathered} \frac{3x+5}{x-1}\times\frac{x-1}{2(3x+5)} \\ \text{After division, we have:} \\ \frac{1}{2} \end{gathered}[/tex]From the final fraction which is 1/2, it can be seen that the numerator is 1 while the denominator is 2.