From the statement, we know that:
• ∠ABC ≅ ∠EFG,
• ∠ABC = (4x + 3)°,
• ∠EFG = (2x + 11)°.
(1) Using the data from above, we have:
[tex]\begin{gathered} ∠ABC\cong∠EFG, \\ (4x+3)\degree=(2x+11)\degree, \\ 4x+3=2x+11. \end{gathered}[/tex](2) Solving for x the last equation:
[tex]\begin{gathered} 4x+3-2x=11, \\ 2x+3=11, \\ 2x=11-3, \\ 2x=8, \\ x=\frac{8}{2}=4. \end{gathered}[/tex](3) Replacing the value x = 4 in the equations of the first angle, we get:
[tex]∠ABC=(4\cdot4+3)°=(16+3)\degree=19\degree.[/tex]Answerm∠ABC = m∠EFG = 19°