[tex]8x ^{2} + 6x = 5[/tex]solve the quadratic equation using the quadratic formula

According to quadratic formula the soluion of th equadaratic equation
[tex]ax^2+bx+c=0[/tex]is given by:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]Given data:
We are given th efollowing quadratic equation
[tex]\begin{gathered} 8x^2+6x=5 \\ 8x^2+6x-5=0 \end{gathered}[/tex]Now we have a=8, b=6 and c=-5.
So,
[tex]\begin{gathered} \sqrt[]{b^2-4ac}=\sqrt[]{6^2-4(8)(-5)} \\ =\sqrt[]{36+260} \\ =\sqrt[]{196} \\ =14 \end{gathered}[/tex]So, the solution of the quadaratic equation will be
[tex]x=\frac{-6\pm14}{2(8)}=\frac{-6\pm14}{16}[/tex]So,
[tex]x=\frac{-6+14}{16}=\frac{8}{16}=\frac{1}{2}[/tex]and
[tex]x=\frac{-6-14}{16}=\frac{-20}{16}=-\frac{5}{4}[/tex]So, the solutions are
[tex]x=-\frac{5}{4},x=\frac{1}{2}[/tex]So, the correct option is C).