Respuesta :

According to quadratic formula the soluion of th equadaratic equation

[tex]ax^2+bx+c=0[/tex]

is given by:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

Given data:

We are given th efollowing quadratic equation

[tex]\begin{gathered} 8x^2+6x=5 \\ 8x^2+6x-5=0 \end{gathered}[/tex]

Now we have a=8, b=6 and c=-5.

So,

[tex]\begin{gathered} \sqrt[]{b^2-4ac}=\sqrt[]{6^2-4(8)(-5)} \\ =\sqrt[]{36+260} \\ =\sqrt[]{196} \\ =14 \end{gathered}[/tex]

So, the solution of the quadaratic equation will be

[tex]x=\frac{-6\pm14}{2(8)}=\frac{-6\pm14}{16}[/tex]

So,

[tex]x=\frac{-6+14}{16}=\frac{8}{16}=\frac{1}{2}[/tex]

and

[tex]x=\frac{-6-14}{16}=\frac{-20}{16}=-\frac{5}{4}[/tex]

So, the solutions are

[tex]x=-\frac{5}{4},x=\frac{1}{2}[/tex]

So, the correct option is C).

ACCESS MORE
EDU ACCESS