Answer:
Max's carton has 2 inches squared more volume than Tucker's carton.
Explanation:
First, calculate the volume of each of the cartons.
Max's Carton
• Height = 6 inches
,• Base Area = 12 inches squared.
[tex]\begin{gathered} Volume=Base\;Area\times Height \\ =12\times6 \\ =72\text{ cubic inches} \end{gathered}[/tex]Max's carton has a volume of 72 cubic inches.
Tucker's Carton
• Height = 7 inches
,• Base Area = 10 inches squared.
[tex]\begin{gathered} Volume=Base\;Area\times Height \\ =10\times7 \\ =70\text{ cubic inches} \end{gathered}[/tex]Tucker's carton has a volume of 70 cubic inches.
Next, we find the difference in volume.
[tex]\begin{gathered} \text{ Difference}=\text{ Max's Carton's Volume-Tucker's Carton's Volume} \\ =72-70 \\ =2\text{ cubic inches} \end{gathered}[/tex]Max's carton has 2 inches squared more volume than Tucker's carton.