Help solve this question and show how to do it

We have the function:
[tex]f(x)=-x^2+6x+8.[/tex]We must find a simplify the difference quotient:
[tex]\frac{f(x+h)-f(x)}{h},h\ne0.[/tex]1) First, we compute f(x + h):
[tex]\begin{gathered} f(x+h) \\ =-\mleft(x+h\mright)^2+6\mleft(x+h\mright)+8 \\ =-(x^2+2xh+h^2)+6(x+h)+8 \end{gathered}[/tex]2) Now, we compute the difference f(x + h) - f(x):
[tex]\begin{gathered} f(x+h)-f(x) \\ =\lbrack-(x^2+2xh+h^2)+6(x+h)+8\rbrack-\lbrack-x^2+6x+8\rbrack \\ =-2xh-h^2+6h \\ =(-2x+6-h)\cdot h^{} \end{gathered}[/tex]3) Finally, the quotient between difference and h is:
[tex]\frac{f(x+h)-f(x)}{h}=\frac{(-2x+6-h)\cdot h^{}}{h}=-2x+6-h[/tex]Answer
[tex]\frac{f(x+h)-f(x)}{h}=-2x+6-h[/tex]