The question is given below as
[tex]\frac{6x^3+()y^2}{12xy}=\text{ ( ) + y}[/tex]Now, we will have to replace the blank spaces with letters a and b
[tex]\frac{6x^3+ay^2}{12xy}=b+y[/tex]Cross multiply both sides, we will have
[tex]\begin{gathered} \frac{6x^3+ay^2}{12xy}=\frac{b+y}{1} \\ 6x^3+ay^2=12\text{xyb}+12xy^2 \end{gathered}[/tex]By comparing coefficients, we will have
[tex]\begin{gathered} ay^2=12xy^2 \\ \text{divide both sides by y}^2 \\ \frac{ay^2}{y^2}=\frac{12xy^2}{y^2} \\ a=12x \end{gathered}[/tex]By comparing the second coefficient, we will have
[tex]\begin{gathered} 12\text{xyb}=6x^3 \\ \text{divide both sides by 12xy, we will have} \\ \frac{12\text{xyb}}{12xy}=\frac{6x^3}{12xy} \\ b=\frac{x^2}{2y} \end{gathered}[/tex]Hence,
The complete equation will be
[tex]\frac{6x^3+12xy^2}{12xy}=\frac{x^2}{2y}+y[/tex]