Logistic growth is modelled by the function
[tex]f(t)=\frac{c}{1+ae^{-bt}}[/tex]where
c = carrying capacity
a = constant
b = growth rate
we know that f(0) = 29; therefore,
[tex]f(0)=\frac{c}{1+a}=29[/tex][tex]\frac{80}{1+a}=29[/tex][tex]\therefore a=\frac{51}{29}[/tex]now we have the function
[tex]f(t)=\frac{80}{1+\frac{51}{29}e^{-bt}}[/tex]Now we just need to find b.
[tex]f(t)=\frac{80}{1+\frac{51}{29}e^{-0.90t}}[/tex]