Given:
The coordinates of C, the midpoint of AB, (X, Y)=(1, 5).
The coordinates of A, (x1, y1)=(3, 2).
Let the coordinates of B be (x2, y2).
The midpoint formula is given by,
[tex](X,\text{ Y)=(}\frac{x1+x2}{2},\text{ }\frac{y1+y2}{2})[/tex]Hence,
[tex]\begin{gathered} X\text{=}\frac{x1+x2}{2}\text{ ---(1)} \\ Y=\frac{y1+y2}{2}\text{ ---(2)} \end{gathered}[/tex]Substitute the known values in equation (1) and solve for x2.
[tex]\begin{gathered} 1=\frac{3+x2}{2} \\ 2=3+x2 \\ x2=2-3 \\ x2=-1 \end{gathered}[/tex]Hence, x2=-1.
Substitute the known values in equation (2) and solve for y2.
[tex]\begin{gathered} 5=\frac{2+y2}{2} \\ 5\times2=2+y2 \\ 10=2+y2 \\ y2=10-2 \\ y2=8 \end{gathered}[/tex]Therefore, the coordinates of point B is (x2,y2)=(-1, 8).