Respuesta :

Explanation:

Consider the following expression:

[tex]\cos(x)=\frac{5}{13}[/tex]

this expression can be represented in the following right triangle:

To find y, we can apply the Pythagoras theorem as this:

[tex]y=\sqrt{13^2\text{ - 5}^2}\text{ = 12}[/tex]

but since x terminates in quadrant IV, we have that

[tex]y=\text{ - 12}[/tex]

and thus

[tex]\sin(x)=\text{ -}\frac{12}{13}[/tex]

and

[tex]\tan(x)=\text{ -}\frac{12}{5}[/tex]

now, using this data in the following formulas:

we can conclude that the correct answer is:

Answer:

[tex]\sin(2x)=\text{ -}\frac{120}{169}[/tex][tex]\cos(2x)=\text{ - }\frac{119}{169}[/tex][tex]tan(x)=\frac{120}{119}[/tex]

Ver imagen AshtanL90153
Ver imagen AshtanL90153
ACCESS MORE