SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given probabilities
[tex]\begin{gathered} P(X=0)=0.5,P(X=1)=0.5 \\ P(Y=1)=0.4,P(Y=2)=0.6 \\ Z=X+Y \end{gathered}[/tex]STEP 2: Write the formula for calculating the required probability
[tex]P(Z<3)=P(Z=1)+P(Z=2)[/tex]STEP 3: Find P(Z=1)
[tex]\begin{gathered} P(Z=1)=P(X=0)\text{ and }P(Y=1) \\ =0.5\times0.4=0.2 \end{gathered}[/tex]STEP 4: Find P(Z=2)
[tex]\begin{gathered} P(Z=2)=P(X=0)\cdot P(Y=2)\text{ or }\times P(X=1)\cdot P(Y=1) \\ (0.5\times0.6)+(0.5\times0.4) \\ =0.3+0.2=0.5 \end{gathered}[/tex]STEP 5: Find the P(Z<3)
[tex]P(Z<3)=0.5+0.2=0.7[/tex]Hence, the answer is 0.7