Segment AB has endpoints A (-5, 7) and B (4, 4). The segment is reflected over the line y =4 to create endpoints A'B' and then rotated 90° CW to form points A"B". Find the location of A" and B".

A(-5,7)
B(4,4)
The segment is reflected over the line y =4
The line y=4 is a horizontal line, coordinate in x doesn't change after reflection.
To find coordinate y after reflection:
Find the distance of each point from y=4
Point A: (-5,7)[tex]\lvert7-4\rvert=3[/tex]As y=4 is below the point A, the point A' will have a coordinate y of: 4-3=1
Point A': (-5,1)Point B: (4,4)[tex]\lvert4-4\rvert=0[/tex]As point B is on line y=4 the point B' will have a coordinate y of 4-0:4
Point B': (4,4)then rotated 90° CW:
Rule for a rotation 90º CW:
[tex]P(x,y)\rightarrow P^{\prime}(y,-x)[/tex]Then, you get the next coordinates for A'' and B'':
[tex]\begin{gathered} A^{\prime}(-5,1)\rightarrow A^{\doubleprime}(1,5) \\ B^{\prime}(4,4)\rightarrow B^{\doubleprime}(4,-4) \end{gathered}[/tex]