Answer:
[tex]\sf y =\dfrac{-1}{4}x+\dfrac{17}{2}[/tex]
Step-by-step explanation:
where m is slope and b is y-intercept.
y = 4x + 9
Slope = m₁ = 4
[tex]\sf \text{Slope of the perpendicular line = $\dfrac{-1}{m_1}$}[/tex]
[tex]\sf \boxed{m = \dfrac{-1}{4}}[/tex]
[tex]\sf y =\dfrac{-1}{4}x +b[/tex]
The point (2,8) passes through the line. Substitute in the above equation to find 'b'.
[tex]\sf 8 = \dfrac{-1}{4}*2+b\\\\\\ 8 = \dfrac{-1}{2}+b\\\\[/tex]
[tex]\sf 8+\dfrac{1}{2}=b\\\\ \dfrac{16}{2}+\dfrac{1}{2}=b\\\\ \boxed{b=\dfrac{17}{2}}[/tex]
Equation of the line:
[tex]\sf y =\dfrac{-1}{4}x + \dfrac{17}{2}[/tex]