Respuesta :
Answer:
3 1/4 + 2/3 * x = 12 1/4 - 1/4 * x
3 1/4 + 2/3 * x + 1/4 * x = 12 1/4
2/3 * x + 1/4 * x = 12 1/4 - 3 1/4
8/12 * x + 3/12 * x = 9
11/12 * x = 9
x = 9 * 12/11
x = 108/11
Answer:
[tex]9 \dfrac{9}{11}[/tex]
Step-by-step explanation:
Let the unknown number be x.
Given equation:
[tex]3 \dfrac{1}{4} + \dfrac{2}{3}x=12 \dfrac{1}{4}-\dfrac{1}{4}x[/tex]
[tex]\textsf{Add\; $\dfrac{1}{4}x$ \;to\;both\;sides\;of\;the\;equation}:[/tex]
[tex]\implies 3 \dfrac{1}{4} + \dfrac{2}{3}x+\dfrac{1}{4}x=12 \dfrac{1}{4}-\dfrac{1}{4}x+\dfrac{1}{4}x[/tex]
[tex]\implies 3 \dfrac{1}{4} + \dfrac{2}{3}x+\dfrac{1}{4}x=12 \dfrac{1}{4}[/tex]
[tex]\textsf{Subtract\; $3\dfrac{1}{4}$ \;from\;both\;sides\;of\;the\;equation}:[/tex]
[tex]\implies 3 \dfrac{1}{4} + \dfrac{2}{3}x+\dfrac{1}{4}x-3 \dfrac{1}{4}=12 \dfrac{1}{4}-3 \dfrac{1}{4}[/tex]
[tex]\implies \dfrac{2}{3}x+\dfrac{1}{4}x=12 \dfrac{1}{4}-3 \dfrac{1}{4}[/tex]
Subtract the mixed numbers:
[tex]\implies \dfrac{2}{3}x+\dfrac{1}{4}x=9[/tex]
When adding fractions with different denominators, multiply the numerator and the denominator of each fraction by the same amount to make the denominators the same:
[tex]\implies \dfrac{4}{4} \cdot \dfrac{2}{3}x+\dfrac{3}{3} \cdot \dfrac{1}{4}x=9[/tex]
[tex]\implies \dfrac{8}{12}x+\dfrac{3}{12}x=9[/tex]
Add the fractions:
[tex]\implies \left(\dfrac{8}{12}+\dfrac{3}{12}\right)x=9[/tex]
[tex]\implies \dfrac{11}{12}x=9[/tex]
Multiply both sides by 12:
[tex]\implies 12 \cdot \dfrac{11}{12}x=12 \cdot 9[/tex]
[tex]\implies 11x=108[/tex]
Divide both sides by 11:
[tex]\implies \dfrac{11x}{11}=\dfrac{108}{11}[/tex]
[tex]\implies x=\dfrac{108}{11}[/tex]
To convert the fraction into a mixed number, divide the numerator by the denominator:
[tex]\implies 108 \div 11 = 9\; \textsf{remainder}\;9[/tex]
The mixed number answer is the whole number and the remainder divided by the denominator:
[tex]\implies x=9 \dfrac{9}{11}[/tex]