Answer:
a) 5.714 m/s²
b) 13.33 m/s²
Explanation:
, [tex]\text{The final velocity, }\text{\ensuremath{v_{f}}}\text{ of the car is }\text{\ensuremath{\dfrac{\Delta v}{\Delta t}=}}\dfrac{{180m}}{9.0s}=20\;m/s[/tex]
The car goes from an initial velocity of 0 m/s to this final velocity in t=3.5s
Therefore the acceleration of the car is given by
[tex]\displaystyle a=\boldsymbol{\dfrac{{v}_{f}-{v}_{0}}{t}}[/tex]
where [tex]v_0[/tex] is the initial velocity
[tex]a=\dfrac{20-0}{3.5}=\dfrac{20}{3.5}=5.714\mathrm{m/s^{2}}\[/tex]
Part a
[tex]\text{Maximum\;Acceleration}}}=5.714 \;m/s^{2}[/tex]
Part b)
If the car accelerated from rest and reached final speed of 20 m/s in 1.5s instead of 3.5s then
[tex]a=\dfrac{\boldsymbol{20}}{\boldsymbol{1.5}}={\displaystyle \textbf{13.33}\;m/s^{2}}[/tex]