Respuesta :

The average rate of change of f(x)=[tex]8x^{2} -5[/tex] on the interval [4,b] is [tex]\frac{128-8b^{2} }{4-b}[/tex]

Given,

The function f(x) =[tex]8x^{2} -5[/tex]

The intervals = [4,b]

The average rate of change = [tex]\frac{f(a)-f(b)}{a-b}[/tex]

Where a and b are the interval

f(4)= [tex]8(4)^{2}-5[/tex]

=123

f(b)= [tex]8b^{2}-5[/tex]

The average rate of change = [tex]\frac{123-(8b^{2}-5) }{4-b}[/tex]

[tex]=\frac{123-8b^{2}+5 }{4-b} \\=\frac{128-8b^{2} }{4-b}[/tex]

Hence, The average rate of change of f(x)=[tex]8x^{2} -5[/tex] on the interval [4,b] is [tex]\frac{128-8b^{2} }{4-b}[/tex]

Learn more about average rate of change of function here

brainly.com/question/23715190

#SPJ1

ACCESS MORE