Respuesta :
[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
The formula for slope according to first principle is :
[tex] \qquad \sf \dashrightarrow \: \[ \displaystyle\lim_{x\to0} \: \: \sf \frac{f(x + h) - f(x)}{h} \][/tex]
[tex] \qquad \sf \dashrightarrow \: \[ \displaystyle\lim_{x\to0} \: \: \sf \frac{ log(x + h) - log(x)}{h} \][/tex]
[tex] \qquad \sf \dashrightarrow \: \[ \displaystyle\lim_{x\to0} \: \: \sf \frac{ log( \frac{x + h}{x} ) }{h} \][/tex]
[tex] \qquad \sf \dashrightarrow \: \[ \displaystyle\lim_{x\to0} \: \: \sf \frac{ log( \frac{ h}{x} + 1 ) }{h} \][/tex]
[tex] \qquad \sf \dashrightarrow \: \[ \displaystyle\lim_{x\to0} \: \: \sf \frac{ log( \frac{ h}{x} + 1 ) }{ \frac{h}{x} \times x} \][/tex]
[tex] \qquad \sf \dashrightarrow \: \[ \displaystyle\lim_{x\to0} \: \: \sf \frac{1}{x} \bigg(\frac{ log_{e} ( \frac{ h}{x} + 1 ) }{ \frac{h}{x} \times log_{e}(10) } \] \bigg)[/tex]
[tex] \qquad \sf \dashrightarrow \: \[ \dfrac{1}{x \: log_{e}(10) } \displaystyle\lim_{x\to0} \: \: \sf \bigg(\frac{ log_{e} ( \frac{ h}{x} + 1 ) }{ \frac{h}{x} } \] \bigg)[/tex]
[tex] \qquad \sf \dashrightarrow \: \[ \dfrac{1}{x \: log_{e}(10) } [/tex]
Now, the best estimate of slope is at x = 20 :
[tex] \qquad \sf \dashrightarrow \: \[ \dfrac{1}{20\times 2.303} [/tex]
[tex] \qquad \sf \dashrightarrow \: \[ \dfrac{1}{46.06} [/tex]
[tex] \qquad \sf \dashrightarrow \: \approx0.0217[/tex]