in image. pls expalin aswell

Therefore in each composite function we get different domains and ranges which is given below.
(1) f(x) = x+2 , g(x) = 3x - 1
(f + g)(x) = f(x) + g(x)
= x+2 + 3x - 1
= 4x +1
Domain = (-∞ , ∞) and range = (-∞ , ∞)
(f - g )(x) = f(x) - g(x)
= x+2 -3x +1
= -2x + 3
Domain = (-∞ , ∞) and range = (-∞ , ∞)
(f.g)(x) = f (x) g(x)
= (x+2)( 3x - 1)
= 3x²- x + 6x - 2
= 3x²+ 5x -2
Domain = (-∞ , ∞) and range = [-49/12 ,∞)
(f/g)(x) = f(x)/g(x)
= x+2/3x-1
Domain = (-∞ , 1/3) ∪ (1/3 ,∞) and range = (-∞ , 1/3) ∪ (1/3 ,∞)
(2) f(x) = x² - 5 and g(x) = -x +8
(f + g)(x) = f(x) + g(x)
= x² - 5 -x +8
= x² - x +3
Domain = (-∞ , ∞) and range = [11/4 ,∞)
(f - g )(x) = f(x) - g(x)
= x² - 5 +x -8
= x² + x - 13
Domain = (-∞ , ∞) and range = [-53/4 ,∞)
(f.g)(x) = f (x) g(x)
= ( x² - 5 )(- x +8)
= -x³ + 8x² + 5x - 40
Domain = (-∞ , ∞) and range = (-∞ , ∞)
(f/g)(x) = f(x) / g(x)
= x² - 5 / -x +8
Domain = (-∞ , 8) ∪ (8 ,∞) and range = (-∞ , -16 - 2√59 ) ∪ (-16 + 2√59 ,∞)
Learn more about domain and range here :
https://brainly.com/question/2264373
#SPJ9