Respuesta :

Answer: 1. {a, b, c, d, e}

2. {a, b, d}

3. {c, f, g, h}

4. {a, c}

Step-by-step explanation:

1. AUC ==> Means take all parameters from A and C.

A+C=

{a, b, c, d}+{a, e}={a, b, c, d, e}

2. B∩A ==> Means take the common parameters from B and A

B: {b, e, a, d}

A: {a, b, c, d}

Both B and A have a, b, and d.

So answer is {a, b, d}.

3. B' is every parameter that isn't in B

Reminder: B={b, e, a, d}.

All parameters: {a, b, c, d, e, f, g, h}

Remaining Parameters(B'): {c, f, g, h}

4. A-B∩C'

First, let's find C'.

C' is every parameter that isn't in C.

Reminder: C={a, e}

All parameters: {a, b, c, d, e, f, g, h}

Remaining Parameters(C'): {b, c, d, f, g, h}

Then lets find B∩C'

B: {b, e, a, d}

C': {b, c, d, f, g, h}

Both B and C' have b and d, so B∩C' is {b, d}

A-{b, d}=

{a, b, c, d}-{b, d}={a, c} ==> Answer for 4

Answer:

[tex]\sf 1) \quad \sf A \cup C = \{a, b, c, d, e\}[/tex]

[tex]\sf 2) \quad B \cap A = \{a, b, d\}[/tex]

[tex]\sf 3) \quad B' = \{c, f, g, h \}[/tex]

[tex]\sf 4) \quad A -(B \cap C') = \{a, c \}[/tex]

Step-by-step explanation:

Set Notation

[tex]\begin{array}{|c|c|l|} \cline{1-3} \sf Symbol & \sf N\:\!ame & \sf Meaning \\\cline{1-3} \{ \: \} & \sf Set & \sf A\:collection\:of\:elements\\\cline{1-3} \cup & \sf Union & \sf A \cup B=elements\:in\:A\:or\:B\:(or\:both)}\\\cline{1-3} \cap & \sf Intersection & \sf A \cap B=elements\: in \:both\: A \:and \:B} \\\cline{1-3} \sf ' \:or\: ^c & \sf Complement & \sf A'=elements\: not\: in\: A \\\cline{1-3} \sf - & \sf Difference & \sf A-B=elements \:in \:A \:but\: not\: in \:B}\\\cline{1-3} \end{array}[/tex]

Given sets:

  • U = {a, b, c, d, e, f, g, h}
  • A = {a, b, c, d}
  • B = {b, e, a, d}
  • C = {a, e}

Therefore:

  • Universal set = {a, b, c, d, e, f, g, h}
  • B' = not in B = {c, f, g, h}
  • C' = not in C = {b, c, d, f, g, h}

Question 1

[tex]\begin{aligned}\sf A \cup C & = \sf \{a, b, c, d\} \cup \{a,e\}\\& = \sf \{a, b, c, d, e\}\end{aligned}[/tex]

Question 2

[tex]\begin{aligned}\sf B \cap A & = \sf \{b, e, a, d\} \cap \{a, b, c, d\}\\& = \sf \{a, b, d\}\end{aligned}[/tex]

Question 3

[tex]\begin{aligned}\sf B' & = \rm U - \sf B\\& = \sf \{a, b, c, d, e, f, g, h \}-\{b, e, a, d\}\\& = \sf \{c, f, g, h \}\end{aligned}[/tex]

Question 4

[tex]\begin{aligned}\sf A -(B \cap C') & = \sf \{a, b, c, d \}- \left( \{b, e, a, d \} \cap \{b, c, d, f, g, h \} \right)\\& = \sf \{a, b, c, d \}- \{b, d \} \\& = \sf \{a, c \}\end{aligned}[/tex]

Learn more about set notation here:

https://brainly.com/question/28353607