Respuesta :
Answer: 1. {a, b, c, d, e}
2. {a, b, d}
3. {c, f, g, h}
4. {a, c}
Step-by-step explanation:
1. AUC ==> Means take all parameters from A and C.
A+C=
{a, b, c, d}+{a, e}={a, b, c, d, e}
2. B∩A ==> Means take the common parameters from B and A
B: {b, e, a, d}
A: {a, b, c, d}
Both B and A have a, b, and d.
So answer is {a, b, d}.
3. B' is every parameter that isn't in B
Reminder: B={b, e, a, d}.
All parameters: {a, b, c, d, e, f, g, h}
Remaining Parameters(B'): {c, f, g, h}
4. A-B∩C'
First, let's find C'.
C' is every parameter that isn't in C.
Reminder: C={a, e}
All parameters: {a, b, c, d, e, f, g, h}
Remaining Parameters(C'): {b, c, d, f, g, h}
Then lets find B∩C'
B: {b, e, a, d}
C': {b, c, d, f, g, h}
Both B and C' have b and d, so B∩C' is {b, d}
A-{b, d}=
{a, b, c, d}-{b, d}={a, c} ==> Answer for 4
Answer:
[tex]\sf 1) \quad \sf A \cup C = \{a, b, c, d, e\}[/tex]
[tex]\sf 2) \quad B \cap A = \{a, b, d\}[/tex]
[tex]\sf 3) \quad B' = \{c, f, g, h \}[/tex]
[tex]\sf 4) \quad A -(B \cap C') = \{a, c \}[/tex]
Step-by-step explanation:
Set Notation
[tex]\begin{array}{|c|c|l|} \cline{1-3} \sf Symbol & \sf N\:\!ame & \sf Meaning \\\cline{1-3} \{ \: \} & \sf Set & \sf A\:collection\:of\:elements\\\cline{1-3} \cup & \sf Union & \sf A \cup B=elements\:in\:A\:or\:B\:(or\:both)}\\\cline{1-3} \cap & \sf Intersection & \sf A \cap B=elements\: in \:both\: A \:and \:B} \\\cline{1-3} \sf ' \:or\: ^c & \sf Complement & \sf A'=elements\: not\: in\: A \\\cline{1-3} \sf - & \sf Difference & \sf A-B=elements \:in \:A \:but\: not\: in \:B}\\\cline{1-3} \end{array}[/tex]
Given sets:
- U = {a, b, c, d, e, f, g, h}
- A = {a, b, c, d}
- B = {b, e, a, d}
- C = {a, e}
Therefore:
- Universal set = {a, b, c, d, e, f, g, h}
- B' = not in B = {c, f, g, h}
- C' = not in C = {b, c, d, f, g, h}
Question 1
[tex]\begin{aligned}\sf A \cup C & = \sf \{a, b, c, d\} \cup \{a,e\}\\& = \sf \{a, b, c, d, e\}\end{aligned}[/tex]
Question 2
[tex]\begin{aligned}\sf B \cap A & = \sf \{b, e, a, d\} \cap \{a, b, c, d\}\\& = \sf \{a, b, d\}\end{aligned}[/tex]
Question 3
[tex]\begin{aligned}\sf B' & = \rm U - \sf B\\& = \sf \{a, b, c, d, e, f, g, h \}-\{b, e, a, d\}\\& = \sf \{c, f, g, h \}\end{aligned}[/tex]
Question 4
[tex]\begin{aligned}\sf A -(B \cap C') & = \sf \{a, b, c, d \}- \left( \{b, e, a, d \} \cap \{b, c, d, f, g, h \} \right)\\& = \sf \{a, b, c, d \}- \{b, d \} \\& = \sf \{a, c \}\end{aligned}[/tex]
Learn more about set notation here:
https://brainly.com/question/28353607