Respuesta :
Answer:
[tex]{ \tt{ {2x}^{2} - {3y}^{2} + 2k - 6y + 2 = 0 }} \\ { \tt{ \{x = 3 \: \: and \: \: y = - 2 \}}} \\ { \tt{ {2(3)}^{2} - {3( - 2)}^{2} + 2k - 6( - 2) + 2 = 0}} \\ { \tt{18 - 12 + 2k + 12 + 2 = 0}} \\ { \tt{2k + 20 = 0}} \\ { \tt{2k = - 20}} \\ { \tt{k = - 10}}[/tex]
Answer:
⇒ k=−9
Step-by-step explanation:
then put P(−2, 2) and we get,
x
2
−7x+ky=0
(−2)
2
−7(−2)+k(2)=0
⇒ 4+14+2k=0
⇒ 18+2k=0
⇒ 2k=−18
⇒ k=−9
again point Q(3, a) lies on the locus
the, put Q(3, a) and k=−9. We get
x
2
−7x+ky=0
(3)
2
−7(3)+(−9)×a=0
9−21−9a=0
−9a=+12
a=
9
−12
a=
3
−4