Respuesta :
Answer:
- [tex]-\sqrt{2}[/tex]
Step-by-step explanation:
Make the following operations:
- a² + b² = 6ab
- a² + 2ab + b² = 8ab
- (a + b)² = 8ab
- a + b = [tex]2\sqrt{2ab}[/tex]
and
- a² + b² = 6ab
- a² - 2ab + b² = 4ab
- (a - b)² = 4ab
- a - b = [tex]-2\sqrt{ab}[/tex], since a < b
The required value is:
- [tex]\cfrac{a+b}{a-b} =\cfrac{2\sqrt{2ab} }{-2\sqrt{ab} } =-\sqrt{2}[/tex]
Answer:
[tex]\dfrac{a+b}{a-b}=-\sqrt{2}[/tex]
Step-by-step explanation:
Given:
[tex]a^2+b^2=6ab[/tex]
[tex]0 < a < b[/tex]
Add 2ab to both sides of the given equation:
[tex]\implies a^2+b^2+2ab=6ab+2ab[/tex]
[tex]\implies a^2+2ab+b^2=8ab[/tex]
Factor the left side:
[tex]\implies (a+b)^2=8ab[/tex]
Subtract 2ab from both sides of the given equation:
[tex]\implies a^2+b^2-2ab=6ab-2ab[/tex]
[tex]\implies a^2-2ab+b^2=4ab[/tex]
Factor the left side:
[tex]\implies (a-b)^2=4ab[/tex]
Therefore:
[tex]\implies \dfrac{(a+b)^2}{(a-b)^2}=\dfrac{8ab}{4ab}[/tex]
[tex]\implies \dfrac{(a+b)^2}{(a-b)^2}=2[/tex]
[tex]\textsf{Apply exponent rule} \quad \dfrac{a^c}{b^c}=\left(\dfrac{a}{b}\right)^c:[/tex]
[tex]\implies \left(\dfrac{a+b}{a-b}\right)^2=2[/tex]
Square root both sides:
[tex]\implies \sqrt{\left(\dfrac{a+b}{a-b}\right)^2}=\sqrt{2}[/tex]
[tex]\implies \dfrac{a+b}{a-b}=\pm\sqrt{2}[/tex]
As 0 < a < b then:
- a + b > 0
- a - b < 0
Therefore:
[tex]\implies \dfrac{a+b}{a-b}=\dfrac{+}{-}=-[/tex]
So:
[tex]\implies \dfrac{a+b}{a-b}=-\sqrt{2}[/tex]